Paraboloid


Paraboloid
The surface of revolution of the parabola which is the shape used in the reflectors of automobile headlights (Steinhaus 1999, p. 242; Hilbert and Cohn-Vossen 1999). It is a quadratic surface which can be specified by the Cartesian equation
 z=b(x^2+y^2).
(1)
The paraboloid which has radius a at height h is then given parametrically by
x(u,v)=asqrt(u/h)cosv
(2)
y(u,v)=asqrt(u/h)sinv
(3)
z(u,v)=u,
(4)
where u>=0v in [0,2pi).
The coefficients of the first fundamental form are given by
E=1+(a^2)/(4hu)
(5)
F=0
(6)
G=(a^2u)/h
(7)
and the second fundamental form coefficients are
e=(a^2)/(2usqrt(a^4+4a^2hu))
(8)
f=0
(9)
g=(2a^2u)/(sqrt(a^4+4a^2hu))
(10)
The area element is then
 dS=(sqrt(a^4+4a^2hu))/(2h)du ^ dv,
(11)
giving surface area
S=int_0^(2pi)int_0^hdS
(12)
=(pia)/(6h^2)[(a^2+4h^2)^(3/2)-a^3].
(13)
The Gaussian curvature is given by
 K=(4h^2)/((a^2+4hu)^2),
(14)
and the mean curvature
 H=(2h(a^2+2hu))/((a^2+4hu)sqrt(a^4+4a^2hu)).
(15)
The volume of the paraboloid of height h is then
V=piint_0^h(a^2z)/hdz
(16)
=1/2pia^2h.
(17)
The weighted mean of z over the paraboloid is
<z>=piint_0^h(a^2z)/hzdz
(18)
=1/3pia^2h^2.
(19)
The geometric centroid is then given by
 z^_=(<z>)/V=2/3h