Centroids and Centers of Gravity

Centroids of Composite Figures

Center of gravity of a homogeneous flat plate
$ W \, \bar{x} = \Sigma wx $
$ W \, \bar{y} = \Sigma wy $

Centroids of areas
$ A \, \bar{x} = \Sigma ax $
$ A \, \bar{y} = \Sigma ay $

Centroids of lines
$ L \, \bar{x} = \Sigma lx $
$ L \, \bar{y} = \Sigma ly $

Center of Gravity of Bodies and Centroids of Volumes

Center of gravity of bodies
$ W \, \bar{x} = \Sigma wx $
$ W \, \bar{y} = \Sigma wy $
$ W \, \bar{z} = \Sigma wz $


Centroids of volumes
$ V \, \bar{x} = \Sigma vx $
$ V \, \bar{y} = \Sigma vy $
$ V \, \bar{z} = \Sigma vz $

Centroids Determined by Integration

Centroid of area
$ \displaystyle A \, \bar{x} = \int_a^b x_c \, dA $
$ \displaystyle A \, \bar{y} = \int_a^b y_c \, dA $

Centroid of lines
$ \displaystyle L \, \bar{x} = \int_a^b x_c \, dL $
$ \displaystyle L \, \bar{y} = \int_a^b y_c \, dL $

Center of gravity of bodies
$ \displaystyle W \, \bar{x} = \int_a^b x_c \, dW $
$ \displaystyle W \, \bar{y} = \int_a^b y_c \, dW $
$ \displaystyle W \, \bar{z} = \int_a^b z_c \, dW $

Centroids of volumes
$ \displaystyle V \, \bar{x} = \int_a^b x_c \, dV $
$ \displaystyle V \, \bar{y} = \int_a^b y_c \, dV $
$ \displaystyle V \, \bar{z} = \int_a^b z_c \, dV $

Centroids of Common Geometric Shapes
RectangleArea and Centroid

centroid and area of rectangle
 
$ A = bd $
$ \bar{x} = \frac{1}{2}b $
$ \bar{y} = \frac{1}{2}d $

TriangleArea and Centroid

centroid and area of triangle
 
$ A = \frac{1}{2}bh $
$ \bar{y} = \frac{1}{3}h $

CircleArea and Centroid

000-circle.gif
 
$ A = \pi r^2 $
$ \bar{x} = 0 $
$ \bar{y} = 0 $