Acceleration

Let a particle travel a distance s(t) as a function of time t (here, s can be thought of as the arc length of the curve traced out by the particle). The speed (the scalar norm of the vector velocity) is then given by
 (ds)/(dt)=sqrt(((dx)/(dt))^2+((dy)/(dt))^2+((dz)/(dt))^2).
(1)
The acceleration is defined as the time derivative of the velocity, so the scalar acceleration is given by
a=(dv)/(dt)
(2)
=(d^2s)/(dt^2)
(3)
=((dx)/(dt)(d^2x)/(dt^2)+(dy)/(dt)(d^2y)/(dt^2)+(dz)/(dt)(d^2z)/(dt^2))/(sqrt(((dx)/(dt))^2+((dy)/(dt))^2+((dz)/(dt))^2))
(4)
=(dx)/(ds)(d^2x)/(dt^2)+(dy)/(ds)(d^2y)/(dt^2)+(dz)/(ds)(d^2z)/(dt^2)
(5)
=(dr)/(ds)·(d^2r)/(dt^2).
(6)
The vector acceleration is given by

a=(dv)/(dt)
(7)
=(d^2r)/(dt^2)
(8)
=(d^2s)/(dt^2)T^^+kappa((ds)/(dt))^2N^^,
(9)
where T^^ is the unit tangent vector, kappa the curvature, s the arc length, and N^^ the unit normal vector.
Let a particle move along a straight line so that the positions at times t_1t_2, and t_3 are s_1s_2, and s_3, respectively. Then the particle is uniformly accelerated with acceleration a iff
 a=2[((s_2-s_3)t_1+(s_3-s_1)t_2+(s_1-s_2)t_3)/((t_1-t_2)(t_2-t_3)(t_3-t_1))]
(10)
is a constant (Klamkin 1995, 1996).
Consider the measurement of acceleration in a rotating reference frame. Apply the rotation operator
(11)
twice to the radius vector r and suppress the body notation,
a_(space)=R^~^2r
(12)
=(d/(dt)+omegax)^2r
(13)
=(d/(dt)+omegax)((dr)/(dt)+omegaxr)
(14)
=(d^2r)/(dt^2)+d/(dt)(omegaxr)+omegax(dr)/(dt)+omegax(omegaxr)
(15)
=(d^2r)/(dt^2)+omegax(dr)/(dt)+(domega)/(dt)xr+omegax(dr)/(dt)+omegax(omegaxr).
(16)
Grouping terms and using the definitions of the velocity v=dr/dt and angular velocity alpha=domega/dt gives the expression
 a_(space)=(d^2r)/(dt^2)+2omegaxv+omegax(omegaxr)+alphaxr.
(17)
Now, we can identify the expression as consisting of three terms
a_(body)=(d^2r)/(dt^2),
(18)
a_(Coriolis)=2omegaxv
(19)
a_(centrifugal)=omegax(omegaxr),
(20)
a "body" acceleration, centrifugal acceleration, and Coriolis acceleration. Using these definitions finally gives
 a_(space)=a_(body)+a_(Coriolis)+a_(centrifugal)+alphaxr,
(21)


where the fourth term will vanish in a uniformly rotating frame of reference (i.e., alpha=0). The centrifugal acceleration is familiar to riders of merry-go-rounds, and the Coriolis acceleration is responsible for the motions of hurricanes on Earth and necessitates large trajectory corrections for intercontinental ballistic missiles.