DIFFERENTIATION USING THE CHAIN RULE


The following problems require the use of the chain rule. The chain rule is a rule for differentiating compositions of functions. In the following discussion and solutions the derivative of a function h(x) will be denoted by tex2html_wrap_inline53 or h'(x) . Most problems are average. A few are somewhat challenging. The chain rule states formally that
tex2html_wrap_inline57 .
However, we rarely use this formal approach when applying the chain rule to specific problems. Instead, we invoke an intuitive approach. For example, it is sometimes easier to think of the functions f and g as ``layers'' of a problem. Function f is the ``outer layer'' and function g is the ``inner layer.'' Thus, the chain rule tells us to first differentiate the outer layer, leaving the inner layer unchanged (the term f'( g(x) ) ) , then differentiate the inner layer (the termg'(x) ) . This process will become clearer as you do the problems. In most cases, final answers are given in the most simplified form.

  • PROBLEM 1 : Differentiate tex2html_wrap_inline71 
  • SOLUTION 1 : Differentiate tex2html_wrap_inline528 .( The outer layer is ``the square'' and the inner layer is (3x+1) . Differentiate ``the square'' first, leaving (3x+1) unchanged. Then differentiate (3x+1). ) Thus,
    tex2html_wrap_inline536
    = 2 (3x+1) (3)
    = 6 (3x+1) .

PROBLEM 2 : Differentiate tex2html_wrap_inline73 .
  • SOLUTION 2 : Differentiate tex2html_wrap_inline542 .
    ( The outer layer is ``the square root'' and the inner layer is tex2html_wrap_inline544 . Differentiate ``the square root'' first, leaving tex2html_wrap_inline544 unchanged. Then differentiate tex2html_wrap_inline544. ) Thus,
    tex2html_wrap_inline550
    tex2html_wrap_inline552
    tex2html_wrap_inline554
    tex2html_wrap_inline556
    tex2html_wrap_inline558
  • Each of the following problems requires more than one application of the chain rule.

    PROBLEM 12 : Differentiate tex2html_wrap_inline93 .

    SOLUTION 12 : Differentiate tex2html_wrap_inline750 .
    ( Recall that tex2html_wrap_inline752, which makes ``the square'' the outer layer, NOT ``the cosine function''. In fact, this problem has three layers. The first layer is ``the square'', the second layer is ``the cosine function'', and the third layer is tex2html_wrap_inline754 . Differentiate ``the square'' first, leaving ``the cosine function'' and tex2html_wrap_inline754 unchanged. Then differentiate ``the cosine function'', leaving tex2html_wrap_inline754 unchanged. Finish with the derivative of tex2html_wrap_inline754. ) Thus,
    tex2html_wrap_inline762
    tex2html_wrap_inline764
    tex2html_wrap_inline766
    tex2html_wrap_inline768
    tex2html_wrap_inline770

SOLUTION 13 : Differentiate tex2html_wrap_inline772 .
( Since tex2html_wrap_inline774 is a MULTIPLIED CONSTANT, we will first use the rule tex2html_wrap_inline696, where c is a constant. Hence, the constant tex2html_wrap_inline774 just ``tags along'' during the differentiation process. It is NOT necessary to use the product rule. ) Thus,
tex2html_wrap_inline782

( Recall that tex2html_wrap_inline784, which makes ``the negative four power'' the outer layer, NOT ``the secant function''. In fact, this problem has three layers. The first layer is ``the negative four power'', the second layer is ``the secant function'', and the third layer is tex2html_wrap_inline786 . Differentiate ``the negative four power'' first, leaving ``the secant function'' and tex2html_wrap_inline786 unchanged. Then differentiate ``the secant function'', leaving tex2html_wrap_inline786 unchanged. Finish with the derivative of tex2html_wrap_inline786. )
tex2html_wrap_inline794
tex2html_wrap_inline796
tex2html_wrap_inline798
tex2html_wrap_inline800
tex2html_wrap_inline802 .