Types of map projections based on developable surface
One way of classifying map projections is by the type of the developable surface onto which the reference sphere is projected. A developable surface is a geometric shape that can be laid out into a flat surface without stretching or tearing. The three types of developable surfaces are cylinder, cone and plane, and their corresponding projections are called cylindrical, conical and planar. Projections can be further categorized based on their point(s) of contact (tangent or secant) with the reference surface of the Earth and their orientation (aspect).Keep in mind that while some projections use a geometric process, in reality most projections use mathematical equations to transform the coordinates from a globe to a flat surface. The resulting map plane in most instances can be rolled around the globe in the form of cylinder, cone or placed to the side of the globe in the case of the plane. The developable surface serves as a good illustrative analogy of the process of flattening out a spherical object onto a plane.
Cylindrical projection
In cylindrical projections, the reference spherical surface is projected onto a cylinder wrapped around the globe. The cylinder is then cut lengthwise and unwrapped to form a flat map.Tangent vs. secant cylindrical projection
Cylindrical projection - tangent and secant equatorial aspect © USGS
In the secant case, the cylinder intersects the globe; that is the diameter of the cylinder is smaller than the globe’s. At the place where the cylinder cuts through the globe two secant lines are formed.
The tangent and secant lines are important since scale is constant along these lines (equals that of the globe), and therefore there is no distortion (scale factor = 1). Such lines of true scale are called standard lines. These are lines of equidistance. Distortion increases by moving away from standard lines.
In normal aspect of cylindrical projection, the secant or standard lines are along two parallels of latitude equally spaced from equator, and are called standard parallels. In transverse aspect, the two standard lines run north-south parallel to meridians. Secant case provides a more even distribution of distortion throughout the map. Features appear smaller between secant lines (scale < 1) and appear larger outside these lines (scale > 1).
Cylindrical aspect – equatorial (normal), transverse, oblique
Cylindrical projection - transverse and oblique aspect © USGS
In normal or equatorial aspect, the cylinder is oriented (lengthwise) parallel to the Earth’s polar axis with its center located along the equator (tangent or secant). The meridians are vertical and equally spaced; the parallels of latitude are horizontal straight lines parallel to the equator with their spacing increasing toward the poles. Therefore the distortion increases towards the poles. Meridians and parallels are perpendicular to each other. The meridian that lies along the projection center is called the central meridian.
In transverse aspect, the cylinder is oriented perpendicular to the Earth’s axis with its center located on a chosen meridian (a line going through the poles). And the oblique aspect refers to the cylinder being centered along a great circle between the equator and the meridians with its orientation at an angle greater than 0 and less than 90 degrees relative to the Earth’s axis.
Examples of cylindrical projections include Mercator, Transverse Mercator, Oblique Mercator, Plate CarrĂ©, Miller Cylindrical, Cylindrical equal-area, Gall–Peters, Hobo–Dyer, Behrmann, and Lambert Cylindrical Equal-Area projections.
Conical (conic) projection
In conical or conic projections, the reference spherical surface is projected onto a cone placed over the globe. The cone is cut lengthwise and unwrapped to form a flat map.Tangent vs. secant conical projection
Conic projection - tangent and secant © USGS
For the polar or normal aspect, the cone is tangent along a parallel of latitude or is secant at two parallels. These parallels are called standard parallels. This aspect produces a map with meridians radiating out as straight lines from the cone’s apex, and parallels drawn as concentric arcs perpendicular to meridians.
Scale is true (scale factor = 1) and there is no distortion along standard parallels. Distortion increases by moving away from standard parallels. Features appear smaller between secant parallels and appear larger outside these parallels. Secant projections lead to less overall map distortion.
Conical aspect – equatorial (normal), transverse, oblique
The polar aspect is the normal aspect of the conic projection. In this aspect the cone’s apex is situated along the polar axis of the Earth, and the cone is tangent along a single parallel of latitude or secant at two parallels. The cone can be situated over the North or South Pole. The polar conic projections are most suitable for maps of mid-latitude (temperate zones) regions with an east-west orientation such as the United States.In transverse aspect of conical projections, the axis of the cone is along a line through the equatorial plane (perpendicular to Earth’s polar axis). Oblique aspect has an orientation between transverse and polar aspects. Transverse and oblique aspects are seldom used.
Examples of conic projections include Lambert Conformal Conic, Albers Equal Area Conic, and Equidistant Conic projections.
Planar projection – Azimuthal or Zenithal
In planar (also known as azimuthal or zenithal) projections, the reference spherical surface is projected onto a plane.Tangent vs. secant planar projection
Planar (azimuthal) projection - tangent and secant © USGS
Planar aspect – polar (normal), transverse (equatorial), oblique
The polar aspect is the normal aspect of the planar projection. The plane is tangent to North or South Pole at a single point or is secant along a parallel of latitude (standard parallel). The polar aspect yields parallels of latitude as concentric circles around the center of the map, and meridians projecting as straight lines from this center. Azimuthal projections are used often for mapping Polar Regions, the polar aspect of these projections are also referred to as polar azimuthal projections.In transverse aspect of planar projections, the plane is oriented perpendicular to the equatorial plane. And for the oblique aspect, the plane surface has an orientation between polar and transverse aspects.
These projections are named azimuthal due to the fact that they preserve direction property from the center point of the projection. Great circles passing through the center point are drawn as straight lines.
Examples of azimuthal projections include: Azimuthal Equidistant, Lambert Azimuthal Equal-Area, Gnomonic, Stereographic, and Orthographic projections.
Azimuthal Perspective Projections
Some classic azimuthal projections are perspective projections and can be produced geometrically. They can be visualized as projection of points on the sphere to the plane by shining rays of light from a light source (or point of perspective). Three projections, namely gnomonic, stereographic and orthographic can be defined based on the location of the perspective point or the light source.Gnomonic Projection (also known as Central or Gnomic Projection)
Gnomonic Projection © USGS
Stereographic Projection
Stereographic projection © USGS
Orthographic Projection
Orthographic projection © USGS
Measuring map scale distortion – scale factor & principal (nominal) scale
As mentioned above, a reference globe (reference surface of the Earth) is a scaled down model of the Earth. This scale can be measured as the ratio of distance on the globe to the corresponding distance on the Earth. Throughout the globe this scale is constant. For example, a 1:250000 representative fraction scale indicates that 1 unit (e.g. km) on the globe represents 250000 units on Earth. The principal scale or nominal scale of a flat map (the stated map scale) refers to this scale of its generating globe.However the projection of the curved surface on the plane and the resulting distortions from the deformation of the surface will result in variation of scale throughout a flat map. In other words the actual map scale is different for different locations on the map plane and it is impossible to have a constant scale throughout the map. This variation of scale can be visualized by Tissot's indicatrix explained in detail below. Measure of scale distortion on map plane can also be quantified by the use of scale factor.
Scale factor is the ratio of actual scale at a location on map to the principal (nominal) map scale (SF = actual scale / nominal scale). This can be alternatively stated as ratio of distance on the map to the corresponding distance on the reference globe. A scale factor of 1 indicates actual scale is equal to nominal scale, or no scale distortion at that point on the map. Scale factors of less than or greater than one are indicative of scale distortion. The actual scale at a point on map can be obtained by multiplying the nominal map scale by the scale factor.
As an example, the actual scale at a given point on map with scale factor of 0.99860 at the point and nominal map scale of 1:50000 is equal to (1:50000 x 0.99860) = (0.99860 / 50000) = 1:50070 (which is a smaller scale than the nominal map scale). Scale factor of 2 indicates that the actual map scale is twice the nominal scale; if the nominal scale is 1:4million, then the map scale at the point would be (1:4million x 2) = 1:2million. A scale factor of 0.99950 at a given location on the map indicates that 999.5 meters on the map represents 1000 meters on the reference globe.
As mentioned above, there is no distortion along standard lines as evident in following figures. On a tangent surface to the reference globe, there is no scale distortion at the point (or along the line) of tangency and therefore scale factor is 1. Distortion increases with distance from the point (or line) of tangency.
Map scale distortion of a tangent cylindrical projection - SF = 1 along line of tangency
Scale distortion on a tangent surface to the globe
On a secant surface to the reference globe, there is no distortion along the standard lines (lines of intersection) where SF = 1. Between the secant lines where the surface is inside the globe, features appear smaller than in reality and scale factor is less than 1. At places on map where the surface is outside the globe, features appear larger than in reality and scale factor is greater than 1. A map derived from a secant projection surface has less overall distortion than a map from a tangent surface.
Map scale distortion of a secant cylindrical projection - SF = 1 along secant lines
Scale distortion on a secant surface to the globe
Tissot's indicatrix – visualizing map distortion pattern
A common method of classification of map projections is according to distortion characteristics - identifying properties that are preserved or distorted by a projection. The distortion pattern of a projection can be visualized by distortion ellipses, which are known as Tissot's indicatrices. Each indicatrix (ellipse) represents the distortion at the point it is centered on. The two axes of the ellipse indicate the directions along which the scale is maximal and minimal at that point on the map. Since scale distortion varies across the map, distortion ellipses are drawn on the projected map in an array of regular intervals to show the spatial distortion pattern across the map. The ellipses are usually centered at the intersection of meridians and parallels. Their shape represents the distortion of an imaginary circle on the spherical surface after being projected on the map plane. The size, shape and orientation of the ellipses are changed as the result of projection. Circular shapes of the same size indicate preservation of properties with no distortion occurring.Equal Area Projection – Equivalent or Authalic
Gall-Peters cylindrical equal-area projection Tissot's indicatrix
The shapes of the Tissot’s ellipses in this world map Gall-Peters cylindrical equal-area projection are distorted; however each of them occupies the same amount of area. Along the standard parallel lines in this map (45° N and 45°S), there is no scale distortion and therefore the ellipses would be circular.
Equal area projections are useful where relative size and area accuracy of map features is important (such as displaying countries / continents in world maps), as well as for showing spatial distributions and general thematic mapping such as population, soil and geological maps. Some examples are Albers Equal-Area Conic, Cylindrical Equal Area, Sinusoidal Equal Area, and Lambert Azimuthal Equal Area projections.
Conformal Projection – Orthomorphic or Autogonal
Mercator - conformal projection Tissot's indicatrix
Tissot’s indicatrices are all circular (shape preserved) in this world map Mercator projection, however they vary in size (area distorted). Here the area distortion is more pronounced as we move towards the poles.
A classic example of area exaggeration is the comparison of land masses on the map, where for example Greenland appears bigger than South America and comparable in size to Africa, while in reality it is about one-eight the size of S. America and one-fourteenth the size of Africa. A feature that has made Mercator projection especially suited for nautical maps and navigation is the representation of rhumb line or loxodrome (line that crosses meridians at the same angle) as a straight line on the map. A straight line drawn on the Mercator map represents an accurate compass bearing.
Preservation of angles makes conformal map projections suitable for navigation charts, weather maps, topographic mapping, and large scale surveying. Examples of common conformal projections include Lambert Conformal Conic, Mercator, Transverse Mercator, and Stereographic projection.