Electron in detail

The electron (symbol: e) is a subatomic particle with a negative elementary electric charge.Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure.The electron has a mass that is approximately 1/1836 that of the proton.Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value in units of ħ, which means that it is a fermion. Being fermions, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Electrons also have properties of both particles and waves, and so can collide with other particles and can be diffracted like light. Experiments with electrons best demonstrate this duality because electrons have a tiny mass.

Electron
A glass tube containing a glowing green electron beam

Experiment

Towards the end of the 19th century Joseph J.Thomson (1856-1940) was studying electric discharges at the well-known Cavendish laboratory in Cambridge, England. Several people had been studying the intriguing effects in electric discharge tubes before him. Spectacular glows could be observed when a high voltage was applied in a gas volume at low pressure. It was known that the discharge and the glow in the gas were due to something coming from the cathode, the negative pole of the applied high voltage. Thomson made a series of experiments to study the properties of the rays coming from the cathode. He observed that the cathode rays were deflected by both electric and magnetic fields - they were obviously electrically charged. By carefully measuring how the cathode rays were deflected by electric and magnetic fields, Thomson was able to determine the ratio between the electric charge (e) and the mass (m) of the rays. Thomson's result was
e/m = 1.8 10-11 coulombs/kg.
The particle that J.J.Thomson discovered in 1897, the electron, is a constituent of all the matter we are surrounded by. All atoms are made of a nucleus and electrons. He received the Nobel Prize in 1906 for the discovery of the electron, the first elementary particle.

Contents

  • 1 History
    • 1.1 Discovery
    • 1.2 Atomic theory
    • 1.3 Quantum mechanics
    • 1.4 Particle accelerators
    • 1.5 Confinement of individual electrons
  • 2 Characteristics
    • 2.1 Classification
    • 2.2 Fundamental properties
    • 2.3 Quantum properties
    • 2.4 Virtual particles
    • 2.5 Interaction
    • 2.6 Atoms and molecules
    • 2.7 Conductivity
    • 2.8 Motion and energy

      History

      See also: History of electromagnetism
      The ancient Greeks noticed that amber attracted small objects when rubbed with fur. Along with lightning, this phenomenon is one of humanity's earliest recorded experiences with electricity. In his 1600 treatise De Magnete, the English scientist William Gilbert coined the New Latin term electricus, to refer to this property of attracting small objects after being rubbed. Both electric and electricity are derived from the Latin ēlectrum (also the root of the alloy of the same name), which came from the Greek word for amber, ἤλεκτρον (ēlektron).
      In the early 1700s, Francis Hauksbee and French chemist Charles François de Fay independently discovered what they believed were two kinds of frictional electricity—one generated from rubbing glass, the other from rubbing resin. From this, Du Fay theorized that electricity consists of two electrical fluids, vitreous and resinous, that are separated by friction, and that neutralize each other when combined. A decade later Benjamin Franklin proposed that electricity was not from different types of electrical fluid, but the same electrical fluid under different pressures. He gave them the modern charge nomenclature of positive and negative respectively. Franklin thought of the charge carrier as being positive, but he did not correctly identify which situation was a surplus of the charge carrier, and which situation was a deficit.

      Discovery

      A round glass vacuum tube with a glowing circular beam inside
      A beam of electrons deflected in a circle by a magnetic field
      The German physicist Johann Wilhelm Hittorf studied electrical conductivity in rarefied gases: in 1869, he discovered a glow emitted from the cathode that increased in size with decrease in gas pressure. In 1876, the German physicist Eugen Goldstein showed that the rays from this glow cast a shadow, and he dubbed the rays cathode rays.During the 1870s, the English chemist and physicist Sir William Crookes developed the first cathode ray tube to have a high vacuum inside.He then showed that the luminescence rays appearing within the tube carried energy and moved from the cathode to the anode. Furthermore, by applying a magnetic field, he was able to deflect the rays, thereby demonstrating that the beam behaved as though it were negatively charged. In 1879, he proposed that these properties could be explained by what he termed 'radiant matter'. He suggested that this was a fourth state of matter, consisting of negatively charged molecules that were being projected with high velocity from the cathode.
      The German-born British physicist Arthur Schuster expanded upon Crookes' experiments by placing metal plates parallel to the cathode rays and applying an electric potential between the plates. The field deflected the rays toward the positively charged plate, providing further evidence that the rays carried negative charge. By measuring the amount of deflection for a given level of current, in 1890 Schuster was able to estimate the charge-to-mass ratio of the ray components. However, this produced a value that was more than a thousand times greater than what was expected, so little credence was given to his calculations at the time.

      Atomic theory

      Three concentric circles about a nucleus, with an electron moving from the second to the first circle and releasing a photon
      The Bohr model of the atom, showing states of electron with energy quantized by the number n. An electron dropping to a lower orbit emits a photon equal to the energy difference between the orbits.
      By 1914, experiments by physicists Ernest Rutherford, Henry Moseley, James Franck and Gustav Hertz had largely established the structure of an atom as a dense nucleus of positive charge surrounded by lower-mass electrons. In 1913, Danish physicist Niels Bohr postulated that electrons resided in quantized energy states, with the energy determined by the angular momentum of the electron's orbits about the nucleus. The electrons could move between these states, or orbits, by the emission or absorption of photons at specific frequencies. By means of these quantized orbits, he accurately explained the spectral lines of the hydrogen atom.However, Bohr's model failed to account for the relative intensities of the spectral lines and it was unsuccessful in explaining the spectra of more complex atoms.
      Chemical bonds between atoms were explained by Gilbert Newton Lewis, who in 1916 proposed that a covalent bond between two atoms is maintained by a pair of electrons shared between them.Later, in 1927, Walter Heitler and Fritz London gave the full explanation of the electron-pair formation and chemical bonding in terms of quantum mechanics.In 1919, the American chemist Irving Langmuir elaborated on the Lewis' static model of the atom and suggested that all electrons were distributed in successive "concentric (nearly) spherical shells, all of equal thickness". The shells were, in turn, divided by him in a number of cells each containing one pair of electrons. With this model Langmuir was able to qualitatively explain the chemical properties of all elements in the periodic table,which were known to largely repeat themselves according to the periodic law.

      Quantum mechanics

      See also: History of quantum mechanics
      In his 1924 dissertation Recherches sur la théorie des quanta (Research on Quantum Theory), French physicist Louis de Broglie hypothesized that all matter possesses a de Broglie wave similar to light. That is, under the appropriate conditions, electrons and other matter would show properties of either particles or waves. The corpuscular properties of a particle are demonstrated when it is shown to have a localized position in space along its trajectory at any given moment.Wave-like nature is observed, for example, when a beam of light is passed through parallel slits and creates interference patterns. In 1927, the interference effect was found in a beam of electrons by English physicist George Paget Thomson with a thin metal film and by American physicists Clinton Davisson and Lester Germer using a crystal of nickelA symmetrical blue cloud that decreases in intensity from the center outward

      Classification

      A table with four rows and four columns, with each cell containing a particle identifier
      Standard Model of elementary particles. The electron is at lower left.
      In the Standard Model of particle physics, electrons belong to the group of subatomic particles called leptons, which are believed to be fundamental or elementary particles. Electrons have the lowest mass of any charged lepton (or electrically charged particle of any type) and belong to the first-generation of fundamental particles. The second and third generation contain charged leptons, the muon and the tau, which are identical to the electron in charge, spin and interactions, but are more massive. Leptons differ from the other basic constituent of matter, the quarks, by their lack of strong interaction. All members of the lepton group are fermions, because they all have half-odd integer spin; the electron has spin 12.